翻訳と辞書 |
First case of Fermat's Last Theorem : ウィキペディア英語版 | First case of Fermat's Last Theorem The first case of Fermat's last theorem says that for three integers ''x'', ''y'' and ''z'' and a prime number ''p'', where ''p'' does not divide the product ''xyz'', there are no solutions to the equation ''xp'' + ''yp'' + ''zp'' = 0. Using the Theorem of unique factorization of ideals in Q(ξ) it was shown that if the first case has solutions ''x'', ''y'', ''z'', then ''x''+''y''+''z'' is divisible by ''p'' and (''x'', ''y''), (''y'', ''z'') and (''z'', ''x'') are elements of ''Hp'', where ''Hp'' denotes a set of pairs of integers with special properties. ==Notes==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「First case of Fermat's Last Theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|